### **Joint Trauma System**



# Extremity Compartment Syndrome (CS) and the Role of Fasciotomy in Extremity War Wounds

Part of the Joint Trauma System (JTS) Clinical Practice Guideline (CPG) Training Series

















#### **Purpose**



This CPG provides evidence—based guidelines for the evaluation and treatment of patients with extremity war wounds and the role of prophylactic and therapeutic fasciotomy.

This presentation is based on the <u>JTS Acute Extremity Compartment Syndrome (CS) and the Role of Fasciotomy in Extremity War Wounds CPG, 25 Jul 2016 (ID:17).</u> It is a high-level review. Please refer to the complete CPG for detailed instructions. Information contained in this presentation is only a guideline and not a substitute for clinical judgment.

# **Agenda**



- 1. Summary
- 2. Background
- 3. Signs & Symptoms
- 4. Evaluation
- 5. Treatment
- 6. Risk Assessment
- 7. Performance Improvement (PI) Monitoring
- 8. References
- 9. Appendices
- 10. Contributors

# Summary



- Compartment syndrome requires immediate operative intervention.
- Prophylactic compartment syndrome is indicated if there is substantial risk of compartment syndrome.

## **Background**



Military trauma patients in general have higher overall trauma burdens and occur in remote locations compared to civilian trauma. Compartment syndrome is a common and disabling problem in extremity war injuries. ☐ 15% of all military orthopedic trauma casualties require a fasciotomy. Compartment syndrome is a clinical syndrome where high pressure with a myofascial space reduces perfusion and decreases tissue viability. ☐ Therapeutic Fasciotomy Indication: Established compartment syndrome ☐ **Prophylactic Fasciotomy Indication**: Substantial risk of compartment syndrome

## **Background**



- Compartment syndrome can be lethal. Early diagnosis challenging.
- Prophylactic fasciotomy used in "at risk" fractures and patients with prolonged ischemia/following limb perfusion.
  - ☐ Difficulties associated with monitoring a patient's physical exam during lengthy transport combined with inability to intervene during time should be considered.

# **Background**



| Risks for Acute Traumatic Compartment Syndrome |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Decreased<br>Compartment<br>Volume             | <ul> <li>Tight cast or dressing, closure of prior fasciotomy, excess traction</li> <li>External limb compression or crush particularly in obtunded or incapacitated casualty</li> <li>Frostbite, burns or electric injury (may include escharotomy)</li> </ul>                                                                                                                                                                                                                                               |
| Increased<br>Compartment<br>Contents           | <ul> <li>Edema accumulation: embolism, intravascular thrombosis, replantation, venous<br/>tourniquet, injections, extravasation, infiltration, ergotamine ingestion, ischemia-<br/>reperfusion, swelling, artery injury or spasm, revascularization procedures, prolonged<br/>arterial tourniquet use, shock hypoperfusion, angiography and catheterization, limbs<br/>positioned well above heart, mal-positioned joints (ankle dorsiflexion,) or stretched<br/>muscles</li> </ul>                          |
|                                                | <ul> <li>Prolonged immobilization and limb compression particularly with obtunded or drugged casualty, some surgical positioning</li> <li>Hemorrhage, hemophilia, coagulopathy, anticoagulation, vessel injury</li> <li>Large volume crystalloid resuscitation</li> <li>Fractures particularly tibia fractures in adults, supracondylar humerus fractures in children displaced, comminuted, or open fractures increase hemorrhage, swelling, and CS risk</li> <li>Popliteal cyst, long leg brace</li> </ul> |

# **Signs & Symptoms**



#### **Signs and Symptoms:**

- Pain out of Proportion: Most important. Often obscured in combat casualties due to altered mental status/heavy sedation.
- Palpably tense muscle compartments: Specific. Not sensitive. Highly subjective.
- Paralysis: Can be due to direct neural trauma.
- Paresthesia: Can be due to direct neural trauma.
- Pulselessness: Late and ominous sign in civilian trauma. Occurs more commonly and potentially within minutes in military trauma.

#### Evaluation (1)



- Tissue edema peaks at 24-48 hours, but vigilance should be maintained for a week.
  - ☐ Delayed Presentation Higher Concern in: sequential surgical procedures, ongoing resuscitation, and/or ischemia-reperfusion.
- Passive stretch pain, palpation of muscles for tenseness and pulse quality combined with index of suspicion make up mainstay of evaluation.
  - ☐ Most caused by open fractures, even with traumatic fasciotomy.
  - ☐ Tibia fracture associated with 45% of compartment syndromes.
- Suggest serial exams hourly when risk is high and less frequently when risk is low.

#### Evaluation (2)



- Pressure measurement of compartments has significant limitations and is not recommended for routine use in theatre.
- In the absence of crush injury, fracture, multiple trauma, over resuscitation, electoral injury, or similar injury, prophylactic fasciotomy on burned extremities are not indicated.



#### Treatment (1)



- Diagnosis of compartment syndrome requires immediate intervention.
  - ☐ Delayed or incomplete compartment syndrome has been associated with increased mortality and need for amputation
- Any limb at risk of compartment syndrome in an austere location should undergo prophylactic fasciotomy when they reach a fixed surgical facility.

#### Treatment (2)



- Patients with compartment syndrome that experience delayed evacuation over 12 hours with nonviable muscle should not have fasciotomy performed.
  - ☐ Situation associated with increased risk of complication.
  - ☐ Patients are best treated with appropriate resuscitation, urine alkalization, mannitol use, and intensive support.
- Once decision is made to perform compartment release, all compartments in the affected anatomic region are over their entire length.

#### Treatment (3)



- Specific surgical expectations during fasciotomies:
  - Calf: Two incision technique
  - Forearm: Superficial and deep volar compartments through incision from lacertus fibrosus to carpal tunnel
  - Foot Fasciotomy: Consequences of fasciotomy can be worse then compartment syndrome. Carefully weigh advantages and disadvantages.
- Most commonly missed compartment syndromes are anterior and deep posterior compartments of the calf.
- Most common incomplete releases are in the calf.



#### **Risk Assessment**



#### **Risk Assessment for Extremity Compartment Syndrome**



## PI Monitoring



#### **■** Intent (Expected Outcomes)

- ☐ When fasciotomy is performed, all compartments are completely released through full skin and fascial incisions.
- When indicated, fasciotomy is performed at the time of re-vascularization of an ischemic extremity.

#### Performance/Adherence Measures

- When fasciotomy was performed, there was complete release of all compartments through full skin and fascial incisions.
- ☐ When indicated in patients with ischemic extremities, fasciotomy was performed at the time of re-vascularization.

#### Data Source

- Patient Record
- Department of Defense Trauma Registry (DoDTR)

#### References



- 1. Shore BJ, Glotzbecker MP, Zurakowski D, et al Acute compartment syndrome in children and teenagers with tibial shaft fractures: incidence and multivariable risk factors. J Orthop Trauma. 2013 Nov; 27(11):616-21.
- 2. Ziran BH, Becher SJ. J Orthop. Radiographic predictors of compartment syndrome in tibial plateau fractures. Trauma. 2013 Nov; 27(11):612-5.
- 3. Park S, Ahn J, Gee AO, et al. Compartment syndrome in tibial fractures. J Orthop Trauma. 2009 Aug; 23(7):514-8.
- 4. McQueen MM, Duckworth AD, Aitken SA, et al Predictors of compartment syndrome after tibial fracture. J Orthop Trauma. 2015 Apr 9.
- 5. Shadgan B, Pereira G, Menon M, et al Risk factors for acute compartment syndrome of the leg associated with tibial diaphyseal fractures in adults. J Orthop Traumatol. 2014 Dec 28.
- 6. Kragh JF Jr, Wade CE, Baer DG, et al Fasciotomy rates in operations enduring freedom and iraqi freedom: association with injury severity and tourniquet use. Orthop Trauma. 2011 Mar; 25(3):134-9.
- 7. Ritenour AE, Dorlac WC, Fang R, et al. Complications after fasciotomy revision and delayed compartment release in combat patients. J Trauma. 2008; 64(2 Suppl):S153-61; discussion S161-2. Landstuhl cohort. Inadequate fasciotomy risks mortality. Surgeons should have this.
- 8. Mubarak SJ, Hargens AR. Compartment Syndromes and Volkmann's Contracture. Saunders, Philadelphia, 1981.
- 9. US Army, Medical Research and Materiel Command. Compartment Syndrome: Diagnosis and Surgical Management DVD, 2008. 90 minutes, how to do surgery.
- 10. Office of The US Army Surgeon General, Health Policy and Services (HP&S) Directorate, All Army Action Order, Complications after fasciotomy revision and delayed compartment release in combat patients. 15 May 2007. Ritenour message.
- 11. Klenerman L. The Tourniquet Manual. London: Springer; 2003. The only book on tourniquets which increase the risk of compartment syndrome somewhat especially if used incorrectly such as a venous tourniquet.
- 12. Reis ND. Better OS. Mechanical muscle-crush injury and acute muscle-crush compartment syndrome: with special reference to earthquake casualties. J Bone Joint Surg Br. 87(4): 450-3, 2005. Late fasciotomy risks infection and mortality.

#### References



- 13. Walters TJ, Kragh JF, Kauvar DS, Baer DG. The combined influence of hemorrhage and tourniquet application on the recovery of muscle function in rats. J Orthop Trauma. 22(1): 47-51, 2008. Risk factors are interrelated.
- 14. Mubarak S, Owen C. Double-Incision Fasciotomy of the Leg for Decompression in Compartment Syndromes. JBJS. 59-A, No.2, Mar 1977.
- 15. Odland RM, Schmidt AH. Compartment syndrome ultrafiltration catheters: report of a clinical pilot study of a novel method for managing patients at risk of compartment syndrome. J Orthop Trauma. 2011 Jun;25(6):358-65.
- 16. Joint Trauma System, Burn Care Clinical Practice Guideline, 11 May 2016.

  <a href="https://test.jts.amedd.army.mil/assets/docs/cpgs/JTS">https://test.jts.amedd.army.mil/assets/docs/cpgs/JTS</a> Clinical Practice Guidelines (CPGs)/Burn Care 11 May 2016 ID12.pdf

  Accessed Mar 2018
- 17. McGill R1, Jones E, Robinson B, et al Correlation of altitude and compartment pressures in porcine hind limbs. J Surg Orthop Adv. 2011 Spring;20(1):30-3.
- 18. Kalns J, Cox J, Baskin J, Santos A, et al Extremity compartment syndrome in pigs during hypobaric simulation of aeromedical evacuation. Aviat Space Environ Med. 2011 Feb; 82(2):87-91.
- 19. Gerdin M, Wladis A, von Schreeb J. Surgical management of closed crush injury-induced compartment syndrome after earthquakes in resource-scarce settings. J Trauma Acute Care Surg. 14 Jun 2012.
- 20. Mathis JE, Schwartz BE, Lester JD, et al. Effect of lower extremity fasciotomy length on intracompartmental pressure in an animal model of compartment syndrome: the importance of achieving a minimum of 90% fascial release. Am J Sports Med. 2015 Jan; 43(1):75-8.
- 21. Bible JE, McClure DJ, Mir HR. Analysis of single-incision versus dual-incision fasciotomy for tibial fractures with acute compartment syndrome. J Orthop Trauma. 2013 Nov; 27(11):607-11.
- 22. Maheshwari R, Taitsman LA, Barei DP. Single-incision fasciotomy for compartmental syndrome of the leg in patients with diaphyseal tibial fractures. J Orthop Trauma. 2008; 22:723–730.
- 23. Kragh JF Jr1, San Antonio J, Simmons JW, et al. Compartment syndrome performance improvement project is associated with increased combat casualty survival. J Trauma Acute Care Surg. Jan 2013; 74(1):259-63.

# **Appendices**



- **Appendix A**: Risks
- Appendix B: Algorithm for Clinical Decision Making on Compartment Syndrome in a Deployed Setting
- Appendix C: Compartment Syndrome Healthcare Record Data
- Appendix D: Compartment Data Sheet
- Appendix E: Operative Note Template
- **Appendix F**: Additional Information Regarding Off-Label Uses in CPGs

#### **Contributors**



- LtCol Gordon Wade, USAF, MC
- LtCol Max Talbot, RCMS, CAF
- John Shero, MHA, FACHE
- CDR Charles Osier, MC, USN

- LTC Anthony Johnson, MC, USA
- CDR Luke Balsamo, MC, USN
- CAPT Zsolt Stockinger, MC, USN

Slides: Maj Andrew Hall, MC, USAF Photos are part of the JTS image library unless otherwise noted.